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Lecture 10. Estimate of quality of regulation in the typical modes  

and in steady-state mode 

 

10.1   The short review of the existing estimation methods of quality of 

regulation 

Stability of ACS is necessary, but not sufficient condition for its availability. 

For example, a system may be stable, but occurs to be insufficiently accurate in its 

response, to have insufficient speed of reaching the target value or to be unavailable 

to provide needed smoothness of output coordinate change. Thus, ACS development 

and research require from us among other things to assure needed quality index of 

transient process, i.e. speed of operation, oscillation, overshoot and so on, which 

characterize accuracy and smoothness of the process flow. 

In general, if stated simple, operation quality of any ACS is determined by the 

error value, that equals to the difference between the target and the real values. 

For qualitative characteristics determination several criterions were developed; they 

are subdivided into 4 groups. 

The first group contains criteria that use error magnitude measured in different 

typical modes; they are called fidelity criterion. 

The second group combines criteria, which determine stability margin, i.e. how 

far is the system state from the stability thresholds.  

Almost always oscillating threshold is dangerous for a dynamic system. It is 

caused by the fact that, usually, the urge towards overall gain intensification makes 

the system approach exactly the oscillating threshold, and then causes self-

oscillations. 

In the third group reside criteria, which deal with performance speed of a 

system. Performance speed means the speed of response to control and disturbance 

actions. The simplest way to estimate such speed is to measure decay time of the 

transient. 

And the last, but far not least, are criteria (the fourth group) under the name 

“integral”. They are used to give some generalized estimation of a system quality and 

may include factors from all other groups. 

  

10.2   Estimate of quality of regulation in the typical modes   

   

To estimate precision of dynamic system regulation process we use magnitude 

of errors which appear in different typical modes.  

So, let us consider the first group of criteria. We will assume ACS described by 

a set of linear equations with constant coefficients. The input applied is the unit step 

function, and the output is a transient process. Consider some typical modes. 

 

1. Static mode (all derivatives are zeroes) 

 

Let the system be given as in fig. 4.1.a. Can we speak about statistic error here?  
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Fig. 4.1a.  Open system 

 

All values constout Q , KWsW s  )0()( 0 , where K is a steady-state gain 

factor (static factor). 

Of course, not; there is no source of error in this case. But, if we apply some 

disturbance F(t), the error is possible (fig. 4.1b). 

 

 
 

Fig. 4.1b.  Open system with disturbances 

 

In this case we deal with steady-state error due to input F(t) (disturbance F(t)). 

It is always a rule to indicate the source of error. 

Here is another situation (Fig. 4.1c); can we expect any error now? 

 

 
 

Fig. 4.1c. Closed-loop system 

 

Yes we can, and we should, since the input Qin(t) is combined from usual input 

signal and negative feedback. 

The last case is interesting and important, so we will consider the influence of 

negative feedback on steady-state error in more details (if  )(1)( ttQout  ). 

Let a system be given, in which all links are static and two external 

disturbances are presented F1 (t)  and F2 (t) (fig.4.2). 

 

 
 

Fig. 4.2.  Closed-loop system 

 

Case A. Consider this system without the disturbances applied. 

Here  
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where 3210 KKKK   and 0K  is the overall gain factor. 

This is an example of steady-state error due to control input (at the finite value

0K ).  

Statement: the higher the overall gain factor 10 K , the lower the static error 

value.  

Actually, there is a latent disturbance in all the links: Ki , i

n

i
KПK

1
0


 , 0 < 0K <Kcr (here 

and further  Kcr is critical). The proof follows. 

The main principle of control is: compare output value with the target one, and 

apply displacement (the difference between them) with negative sign to the input, in 

this case:   
)()()( tQtQt outin 
. 

The error transfer function )(sW  is: 
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Steady-state (static) error is 
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1
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From this follows, that the higher the gain factor K0, the smaller the static error 

value  .  

It is a usual practice to raise coefficient K0 in order to obtain more precise 

system, but one should always keep in mind the system stability (K0 <Kcr). 

Case B.      The external disturbances are presented. 

First of all, rewrite the transfer functions W(s)  according to all 3 inputs: 
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The latter two summands show contribution of disturbances to error value. 

Consider the case, when 0K  >> 1. It can be easily seen that output signal is: 
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Hence, also in this case the steady-state error becomes smaller after increasing the 

gain factor 0K . 

 

10.3     Estimation of quality of regulation in steady-state mode 

 

Let us consider the control system error at continuous input signal; error the 

transfer function and expansion error’s in series.  

Consider the system in fig. 4.3. Here error is )(Q)(Q)( ttt outin  . 

  The error transfer function is the following: 
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Fig. 4.3.  Closed-loop system 

 

The main question is what are the sources of errors in such system? 

First, it is lag. To show this, let the transfer function of the open-loop system 

be the transfer function of the first order aperiodic link K = 1 and T  0, e.g. 
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sW .  Then mathematical description (in time space) will be written as 

)(Q)(QQ ttT inoutout   

 

But then outTt Q)(  ,  since )(Q)(Q)( ttt outin  . 

Conclusion: the error is a function of speed of change of input coordinate, and 

this is aftereffect. 

Secondly, errors originate in characteristics of input disturbances (whether all 

(n-1) derivatives are not 0). The error transfer function here: 
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Rewritten as Maclaurin series: 
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Using (*) and the fact that  )(Q)()( ssWs in   we will rewrite error function in 

terms of t instead of s (transformation from image to original): 
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Accordingly, the system error is determined by the system parameters 

,...)2,1,0( ici  and by the input disturbances parameters )(Q tin . Coefficients in series 

(4.2) are usually called error coefficients: co is the static error coefficient; 1c  is the 

kinetic error coefficient (characterizes speed), 1c is used when 00 c ; 2c  is the 

dynamic error coefficient (characterizes acceleration) etc. 

Formula (4.2) is the expansion in series of error in steady-state, where  
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The notion of astaticism (no error) 

Astatic Control System 

Astaticism is the absence of steady-state (static) error; it is determined by the 

number of first zero coefficients in series (4.2). 

If 00 c  indicates nonstatic system of the first order, if 00 c  and 01 c  is 

nonstatic system of the second order, and so on. 

If at least one of the first coefficients is not equal to zero ( 00 c , 01 c ),  

astaticism is impossible, i.e. it is a static system. 

The integrating link is the simplest example of astatic link. In particular, 

electromotor is nonstatic link.  

Increasing the number of integrating links leads to several zero error 

coefficients, and hence,  (t) → 0, but the system stability maintenance becomes more 

complicated. 

To conclude, staticism is a measure of relative steady-state (static) error. In 

some systems stead-state error is undesirable, in those cases the system is designed in 

the way that makes this error equal to zero, i.e. to nonstatic system. 

  


